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In  this paper experimental measurements of the time-dependent velocity and 
density perturbations upstream of obstacles towed through linearly stratified fluid 
are presented. Attention is concentrated on two-dimensional obstacles which 
generate turbulent separated wakes a t  Froude numbers, based on velocity and body 
height, of less than 0.5. The form of the upstream columnar modes is shown to be 
largely that of first-order unattenuating disturbances, which have little resemblance 
to the perturbations described by small-obstacle-height theories. For two-dim- 
ensional obstacles the disturbances are similar to those found by Wei, Kao & Pao 
(1975) and it is shown that provided a suitable obstacle drag coefficient is specified, 
the lowest-order modes (at least) are quantitatively consistent with the results of the 
Oseen inviscid model. 

Discussion of some results of similar measurements upstream of three-dimensional 
obstacles, the importance of towing tank endwalls and the relevance of the Foster & 
Saffman (1970) theory for the limit of zero Froude number is also included. 

1. Introduction 
It is well known that the subcritical flow of a stratified fluid past an obstacle 

generates motions upstream of the obstacle. Subcritical flow is here defined as a flow 
for which the Froude number based on channel height is less than 1/n, so that one 
or more stationary lee waves are present. Some of the upstream motions do not decay 
with distance upstream. These so-called ‘columnar’ modes have zero frequency and 
a sinusoidal structure in the direction of the density gradient ; they effectively lead 
to a continuous change in upstream conditions. If the obstacle is two-dimensional 
(i.e. of infinite extent in the direction perpendicular to the upstream flow and the 
direction of density gradient), inviscid theories show that the length of the upstream 
region affected by the columnar modes increases without bound as t+ co. Non-zero 
viscosity (and/or diffusivity) will, however, limit the region affected, since the wave 
amplitudes will then slowly decay. 

There has been considerable discussion in the literature concerning the origin and 
nature of these disturbances. The inviscid Oseen model, in which the equations for 
a Boussinesq fluid are linearized and solved as an initial-value problem, has been 
particularly useful. Trustrum (1964, 1971), Wong & Kao (1970) and Janowitz (1981, 
1984) all describe the time-dependent nature of the upstream flow using models of 

t On assignment from the National Oceanic and Atmospheric Administration, US Department 
of Commerce. 
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this sort. For an upstream flow velocity (or towing speed) of U ,  a channel depth of 
D and a linear density gradient with Brunt-Vaisalii frequency defined by 

internal gravity waves can propagate upstream when nU/ND < 1. With 
K = N D / n U ,  if n < K then n modes will propagate upstream at speeds given by 
KUIn. Since these modes will eventually distort the conditions far upstream, this is 
one of the features of confined subcritical flows that makes the exact solutions found 
by Long (1953, 1955) for finite-amplitude motions inappropriate. 

Janowitz (1968) included the viscous terms in his steady-state analysis of finite- 
amplitude shear waves. He defined a lengthscale 1 = (Uv/N2)i and showed that the 
asymptotic solution for distances (2) far upstream is valid for x / l %  Re;, where 
Re, = Ul/v .  Laboratory experiments on upstream influence are often done in tanks 
where the obstacle is towed through the fluid. Typically, Re, can then be O( 100) and 
LIZ is often 0(104) (for U = 5 cm/s, N = 1 s-l and L,  the length of the tank, = 10 m). 
Viscous effects are therefore often likely to be important in such experiments, even 
if a steady upstream state is achieved. Furthermore, in towing-tank experiments the 
effects of the endwalls cannot always be neglected. Foster & Saffman (1970) studied 
what happens in the limit of zero Froude number and vanishing viscous diffusion 
when a body of height h is towed through a linearly stratified fluid in a tank of finite 
length. They showed quantitatively how the upstream (and downstream) density 
field changes with time in the region bounded by the horizontal planes through the 
top and bottom edges of the obstacle-a direct result of the incompressibility 
condition and the presence of the endwalls. Snyder et al. (1985) have referred to this 
phenomenon as ‘squashing ’. It arises essentially because of the endwall reflections of 
the density perturbations produced by the columnar wave modes. In  practice, a 
density discontinuity at z = t h cannot occur, because of viscous diffusion, and Foster 
& Saffman showed that there will certainly be a shear layer whose thickness, 6, is of 
order (UhLv/N2$. In  terms of a Froude number and Reynolds number based on body 
height, S/h = ( F i  (L/h)/Re,)g. In  a typical experiment Re, = 2000, F,  = 0.2 and 
L / h  = 100, so that 6/h  = 0.3 and viscous effects will generally be significant. 

In  addition, viscous effects ensure that the blocked fluid region extends only a 
finite distance ahead of the obstacle. However, as Tritton (1977, p. 188) has shown, 
the length of the blocked region can be very large indeed-of order Re h/Fi .  
For example, with Re = 2000, F ,  = 0.2 and h = 10 cm, this corresponds to 5 km! 
Longitudinal diffusion effects will therefore seldom be significant in towing-tank 
experiments. 

There seems to have been little study of the importance of the ‘squashing’ effect 
in towing-tank experiments and, indeed, only recently has any detailed attempt 
been made to compare experimentally determined upstream velocity and density 
perturbations with the predictions of even the inviscid Oseen model (Janowitz 
1984). In a number of papers, Baines (e.g. 1977, 1979) has studied the upstream 
disturbances - principally in order to check the validity, for subcritical flows, of 
Long’s model (1955). Generally the disturbances some distance upstream did not 
seem like those predicted by the Oseen theories. Neither did they have the features 
of the perturbations that arise in ‘small-obstacle-height ’ theories (as McIntyre’s 
1972 ; this is strictly a ‘weakly nonlinear ’ theory). Indeed, McIntyre’s theory only 
predicts second-order perturbations in the steady state and these do not include 
mode-one (n = 1) disturbances a t  all; these were clearly present in Baines’ 
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experiments. Baines & Grimshaw (1979) have presented an alternative perturbation 
theory in which the small parameter was taken as the obstacle Froude number rather 
than the obstacle height. Again, no steady-state first-order upstream disturbances 
were predicted. Baines (1977) attributed differences between experiment and 
theories of this type, of which McIntyre’s is certainly the most well developed, to 
nonlinear finite-depth effects. There seems no doubt that a more sophisticated theory 
is needed to account for the upstream disturbances found in cases where the obstacle 
does not generate a significant separated wake. Since, in the limit of zero Froude 
number, the depth of blocked fluid must equal the body height, body lengthscales 
must presumably enter the theory explicitly. 

In  the case of obstacles generating an open separated turbulent wake, which Wei, 
Kao & Pao (1975) defined as ‘source-like’ but should perhaps be simply called ‘more 
blunt ’, the situation seems rather different. These were perhaps the first authors to 
study the upstream columnar modes in any detail. Whilst for relatively streamlined 
bodies the first-order disturbances decayed with upstream distance and, with 
hindsight, could possibly have been similar to those studied by Baines (1979), for the 
more blunt obstacles steady-state first-order columnar modes like those in the 
Oseen theories were generated. However, no quantitative comparisons with theory 
were made. 

McIntyre (1972) explicitly stated the likely difference between these two kinds of 
obstacles : ‘ in laboratory experiments, columnar disturbances could easily result 
from.. .drag associated with separation bubbles or local turbulent redistribution of 
x-momentum or buoyancy.. .these could correspond to the presence of forcing terms 
of type one ’ ~ i.e. giving disturbances of first order in h / D ,  rather than the second- 
order ones detailed in his theory. Snyder et al. (1985) have argued that many of the 
low-Froude-number towing-tank experiments on two-dimensional obstacles are 
misleading because steady-state conditions were never really achieved since the 
obstacles would probably, and in some cases demonstrably, have generated 
unattenuated first-order upstream disturbances. 

The first objective of the present work was to obtain more detailed measurements 
of the upstream columnar modes than are available elsewhere and, in the absence of 
a suitable nonlinear theory, compare them with Oseen-theory predictions. Com- 
parisons with the implications of the Foster & Saffman (1970) F, = 0 results are 
included. 

Many experimental studies have been concerned more with three-dimensional 
obstacles, since such cases generally have more direct relevance to atmospheric flows. 
Intuitively one might expect the upstream disturbances to become increasingly 
small as the spanwise width of the obstacle becomes smaller. Castro, Snyder & Marsh 
(1983, hereinafter denoted by CS) studied the stratified flow around the three- 
dimensional triangular ridges and found one or two puzzling features of the flow 
which, arguably, could have been caused by time-dependent upstream motions of 
sufficiently large amplitude to alter the upstream conditions. It is obviously 
important to have some ‘ feel ’ for the likely importance of upstream motions in such 
experiments ; the second purpose of the current work was therefore to investigate 
upstream motions generated by three-dimensional obstacles. 

This work has arisen from a wider study which included an investigation of the lee- 
wave field. The results of that aspect of the work have been reported separately 
(Castro 1987). We begin, in the following section, with a brief discussion of some of 
the relevant theories. The experimental techniques are described in 93 and the results 
are presented and discussed in 934 and 5. 
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2. Upstream columnar waves, blocking and ‘squashing’ 
We start by summarizing some of the well-known fundamental features of 

infinitesimal two-dimensional waves in a linearly stratified fluid. For horizontal 
wavenumber k = 2n/h (with h equal to the wavelength) and circular frequency o, the 
dispersion relationship for such waves is 

Stationary waves are present if the obstacle speed is identical with the phase speed, 
i.e. if F 2  = l / ( k 2 D 2  + n2n2) or F < l/nn. ( F  is here based on channel depth D.) The 
group velocity of such waves is less than U so they appear only in the lee of the 
obstacle, but upstream-propagating waves with zero wavenumber and frequency 
will then also appear, since their group velocity, ND/nn,  is greater than U .  For 
1/2n < F < l / n ,  only the lowest mode (n = 1)  can propagate upstream; for 
1/3n < F < 1/2n, modes 1 and 2 can propagate upstream, aqd so on. 

The wavelength of the lee waves follows directly from the above and is given 

where F ,  is the Froude number based on obstacle height and e = nh/D. CS showed 
that lee waves behind the obstacles used in the present experiment had wavelengths 
close to this ‘two-dimensional limit’ for the n = 1 mode, for all a (ratio of 
cross-wind length to height of the obstacle) and F ,  < 1. The number of possible 
columnar modes, n,, is Int(l /eFh),  where Int(x) denotes the integer part of x. 
K = ND/nU = l / ( e F h ) .  As a typical example in the present study, with e = 0.26, 
h = 9 cm, and F ,  = 0.4, nine modes are possible. The first mode travels the fastest, a t  
a group velocity of ND/n or U/eFh,  i.e. about ten times the obstacle speed, with 
higher-order modes travelling progressively slower. Clearly if this n = 1 mode has 
any significant amplitude and can be reflected from the endwall without great 
attenuation, the obstacle cannot move very far down the tank before the flow around 
it begins to be affected by wave reflections. Indeed, rejlections of the lowest-order 
waves may arrive a t  some distance upstream x, say, before the first arrival a t  x of the 
slower moving higher-order modes. The Oseen theories, which consider either a 
volume source or a momentum-sink-type disturbance, suggest that the amplitude of 
the columnar modes increases with mode number (see below), so that steady-state 
conditions a t  any particular x would not occur until all the wave modes had arrived 
a t  that position. I n  Baines’ (1977) experiments, up to 11 modes were excited and the 
complicated structure of the upstream flow was evident. If reflections are suppressed 
(or the tank is long enough) it would presumably be possible in principle to achieve 
effectively steady-state conditions around the body itself once the slowest-moving 
upstream mode had moved far enough upstream to be out of the region in which the 
local pressure field of the obstacle was significant. 

It is instructive to compare the basic results of Wong & Kao’s (1970) and 
Janowitz’s (1981, 1984) theories. The first authors assumed a volume source-like 
disturbance and it is easy to show from their results that  the upstream columnar- 
mode velocity and density perturbations are given by 

Q nk K cos(nnz/D) c Au 
U UD,=, K - n  

- - _  -- 
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A p  _ -  NU Q $ K sin(nnz/D) 
po g UD,=, K-n ’ 

where Q is the prescribed volume flux. Note that because of this flux, there is an 
n = 0 contribution to the velocity perturbation to satisfy continuity. Note also that 
although in many experiments N U / g  is O(1Ow2), this density perturbation is not 
small when compared with, say, the initial density difference over the obstacle height 
(e.g. Ap/Aph  is typically 0.4 in our experiments). 

Janowitz (1981) used a momentum sink as the disturbance; for bounded obstacles 
this is perhaps more appropriate than a volume source. In  his more recent 
generalization of the theory (1984) he showed that 

Au lzk n cos (nnz /D)  - = - y  c 
U ,-, K-n 

--y c 
Po 9 a = o  K - n  
Ap - NU Izk n sin (nnz /D)  - 

9 

where y is the obstacle drag (made non-dimensional by poU2D). There is an obvious 
similarity between ( 1 )  and ( Z ) ,  the major difference being that the higher-order waves 
are even more dominant in (2 )  than they are in ( l ) ,  since n appears in the numerator. 
Wong & Kao assumed a source singularity, allowing Q to come outside the 
summation sign (i.e. Q =I= f (n) ) ,  but Janowitz noted that the force distribution G, can 
be related directly to the drag by G, = Znny, provided that nxb/D < 1 ,  where b ( c h)  
is the height of the streamline enclosing the force distribution, normalized by the 
tank depth. Now generally, b = O(h),  so that in the present experiments, taking 
b = 0.5h as typical, the theory may only give reasonable results for n < 8. It can be 
shown that for higher-order modes, G ,  < Bnny, so the relative amplitude of these 
modes may be rather lower than suggested by (2) .  The results presented later confirm 
that belief. Note that in common with all similar theories-and those based on 
Long’s model - the solutions are singular for integral values of K .  

It is also important to note that there is no body height scale (h ,  say) in these 
theoretical results so, as Fh + O ,  (1) and (2) do not give a superposition of higher and 
higher modes in a way that would lead to a fully blocked region of depth h extending 
upstream of the body. I n  fact, a Fourier superposition that did lead to  such a region 
would require the wave amplitude to decrease with increasing wavenumber ; (1)  and 
(2 )  have the opposite behaviour. I n  this respect the theories are rather different from 
that of, say, Bretherton (1967) who studied inviscid inertial waves in a rotating 
fluid. (The body lengthscale was there included explicitly and the build-up of 
singularities a t  the edge of the Taylor column was shown to be associated with 
successive arrival of waves of smaller and smaller scale.) 

It should be emphasized that these linear Oseen theories are, from a mathematical 
viewpoint, somewhat unsatisfactory. In  addition to the obvious difficulty that first- 
order perturbations would seem to invalidate the Oseen approximation, Baines 
(1987) has argued that the generation of first-order disturbances must essentially be 
a nonlinear process, arising most clearly when K is closely integral (where linear 
theories break down). Whilst the columnar-mode propagation may be linear, it is 
therefore difficult to see how a linear theory could properly account for the generation 
of these modes. Grimshaw & Smyth (1986) have developed a non-linear theory (with 
h / D  as the small parameter) for cases in which K is close to  an integer but their 
results are not appropriate for the uniform-upstream-stratification case. As yet there 
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is no satisfactory nonlinear theory that can account for first-order disturbances. 
Despite these difficulties it is shown in this paper that  the linear Oseen theories do 
seem to have some utilitarian value. 

In  the present experiments, the body shapes cannot be expected to  lead to effective 
surface streamline shapes like those found by Janowitz (1981) for specific force 
distributions, but the relative amplitudes of different wave-mode velocity and 
density perturbations can still be usefully compared with the theories. Further, the 
density perturbations implied by (1) and (2) for a given Q or drag (deduced from 
the velocity perturbation results) can be compared with those expected from the 
‘squashing’ model, to see how important wave reflections are in practice. Note that 
reflections cause velocity perturbations to cancel but density perturbations to 
accumulate. Foster & Saffman (1970) show that in the Fh+O limit, the density 
perturbations are given by 

Ap - N 2  Ut z 

Po g L, 
------z ( forx< I ) ,  

where t is the time from the commencement of the tow and L, is the initial distance 
between the obstacle and the upstream endwall. 

3. Apparatus and techniques 
All the experiments were conducted in the large towing tank of the EPA Fluid 

Modeling Facility. Stratification of the nominally 1.1 m deep layer of water was 
achieved in the usual way with salt ; Thompson & Snyder (1976) contains full details. 
As in CS an initially linear density profile with a nominal Brunt-Vglisalgl frequency 
of N = 1.33 s-l was used and the upper few cm were syphoned off (with a 
corresponding layer of brine introduced a t  the bottom) after every few tows, to 
maintain the linear profile a t  the top. 

Since we wanted to assess the possible influence of columnar motions on our earlier 
experimental results, most of the obstacles used were identical with those of CS, 
being 9 cm in height and triangular in cross-section, with flat vertical ends. Two 
additional obstacles, one with a ‘Witch of Agnesi’ shape (Baines 1977) and the other 
a simple (solid) fence, both of height 18.8 cm, were also used. The models were 
mounted upside down on a baseplate supported by a carriage, and towed at  speeds 
ranging between about 1.2 and 12 cm/s. With a body height h of 9 cm and 
N = 1.33 s-l, this corresponds to 0.1 < F ,  < 1.0, but most of the measurements were 
made a t  F,  = 0.2 or 0.4. The baseplate extended upstream and downstream of the 
obstacles a distance of about 10h and 15h, respectively (for h = 9 cm). It was fitted 
with a 5 mm diameter boundary-layer trip just downstream of the leading edge (to 
ensure similarity with our earlier experiments (CS) in which the intent was to 
minimize Reynolds-number effects), and was just submerged so that its surface was 
about 4 mm below the water surface. Figure 1 shows the general experimental set- 
up. The flow was illuminated by banks of fluorescent tubes mounted on one side of 
the tank, and cameras located on the opposite side and underneath were used to 
obtain permanent records of the flow structure. CS, Hunt & Snyder (1980) and 
Thompson & Snyder (1976) give complete details of these experimental arrange- 
ments. 

The one new feature of our experimental techniques, not used quantitatively in 
any earlier experiments in the facility, was the method used to obtain velocity 
measurements within the developing upstream columnar-wave field. Prior to each 
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FIGURE 1.  Experimental arrangement. Not to scale. 

I 

Initial streak 
location 

FIGURE 2. Dye-streak perturbations ; explanatory sketch. See text for notation. 

tow, vertical dye streaks a t  upstream locations equivalent to x, /h  = 62, 120 and 174 
(at  t = 0) were introduced by simply dropping a ‘phial’ of small potassium 
permanganate crystals into the tank, on the lateral centreline of the flow (y = 0). x is 
here measured positive upstream. Stationary cameras, mounted so that these streaks 
appeared centrally in their field of view, were then triggered automatically by the 
Facility’s minicomputer, to take photographs at a sequence of preset times (not 
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xo/h = 174 (f = 0) 

400 320 I . 

FIGURE 3. Actual streak perturbations for a = 2, F ,  = 0.2. From photographs taken 20 s apart 
a t  Frame 3. Elapsed time shown in seconds. 

necessarily the same for each camera) after the start of the carriage. Upstream wave 
modes resulted in distortion of these streaks and, on the assumption that vertical 
motions are negligible, the horizontal velocity at any height and any time could be 
computed by comparing photographs taken just before and just after the required 
time. 

The method actually used is best described with the aid of figure 2, which shows 
the shape of the dye streak after times t, and t,. At t = 0, the streak is vertical and 
corresponds to a distance xo upstream of the starting position of the obstacle. Let the 
displacement of the streak from this line be xi and x; (at height z )  after times t ,  and 
t,. The velocity a t  a time a(tl+t,) is then given by (x~-x; ) / ( t , - t , )  and this occurs 
when the obstacle is a distance xo-U$(tl+t,) upstream of the vertical xo line. 
Strictly, the velocity so measured occurs when the body is a little closer than this, 
so all measurements included the appropriate correction to the obstacle location 
(xc, in figure 2) ; this was only significant after long times when xi and x; could be 
large and the body was relatively close. 

Scaling factors for the photographic prints were obtained by noting the positions 
of the obstacles in consecutive photographs and assuming that the development and 
printing process did not give variations within any one batch. Each tow resulted in 
up to 100 photographs, which were all processed together, and sets of traced dye 
streaks were obtained on the same sheet of paper by using a standard ‘light box ’. 
Great care was taken in ensuring that the paper was positioned as accurately as 
possible on each photograph, but inevitably the accuracy of the whole technique was 
probably no better than, typically, f5% of the towing speed. The assumption of 
negligible vertical motion must clearly be inadequate in the vicinity of the body 
itself, although less so at the very lowest Froude numbers, so the accuracy 
deteriorates in that region. 

Figure 3 shows a typical set of dye streaks, obtained for a case with F ,  = 0.2, and 
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a = 0.2, a t  20 s intervals. It is clear that velocity estimates are most easily obtained 
near ‘peaks and troughs’ of the wave field, and that after long times the streaks 
can become so elongated that they disappear from the field of view entirely. 
Consequently, further dye streaks were frequently produced during the course of a 
tow by dropping in another phial of crystals. It should be noted that to obtain more 
resolution it is, in principle, only necessary to reduce the time between photographs. 
However, this eventually leads to more scatter in the calculated velocities, so that 
some compromise was often necessary; this amounted, in practice, to not always 
using the closest available streaks, at  t ,  and t,, to obtain the velocity at  t(tl +t,), but 
using instead streaks a t  t ,  - At and t, + A t .  

Upstream density perturbations were obtained by drawing samples of fluid 
through vertical sampling rakes at  various times and positions upstream. Because a 
finite time was required to obtain the samples, these were not truly instantaneous 
measurements, but the effects of finite sampling time are insignificant in the results 
presented here. Snyder et al. (1985) give full details of the technique and a few of our 
results were included in that work, but without any comparison with theory. 

4. Two-dimensional cases 
4.1. Experimental results 

In  this section experimental velocity and density perturbations upstream of the two- 
dimensional triangular ridges are presented ; they are compared with the implications 
of the Janowitz (1984) and Foster & Saffman (1970) theories in $4.2. Recall that 
given a Froude number of F ,  = U/Nh,  modes 1 to nk (nk = Int  ( l / e F h ) ,  with 
e = nh/D) will propagate upstream a t  speeds given by ND/nn.  Mode n therefore 
arrives a t  a fixed upstream location xo/h -measured from the initial obstacle 
location - after a time (x, /h)(nn/ND). It will subsequently be reflected from the 
upstream endwall of the tank after a time dependent on the initial position of the 
obstacle. Further reflections will occur at  even greater times both from the endwalls 
of the tank and from the body itself if z /h  < 1.  

Figure 4 ( a )  presents the variation with z/h of the perturbation velocity a t  
x / k  x 16, F ,  = 0.4, deduced from photographs of the deforming dye streaks as 
explained in $3,  for each of the three ‘frames’ (initial xo/h locations). At this x /h ,  six, 
seven, and eight of the possible nine wave modes should have arrived a t  the first, 
second and third frames, respectively. It is clear that, as expected, higher wave 
modes influence the velocity profile at  x / h  x 16 as the obstacle moves farther down 
the tank, but the relative amplitudes of the different modes is less easy to discern. 
Qualitatively, it  would seem that the amplitude increases with wavenumber, since a t  
the last dye-streak position the velocity profile has a wavelength of around 3h, or 
0.250, corresponding to the eighth mode, whereas at the first frame the sixth mode 
is dominant. If the amplitudes of the higher modes were much less than those of the 
lower, the wave shape would be dominated by the lower modes. 

The variation of amplitude with time a t  fixed x/h and each of the three dye 
positions is shown in figure 5, for z /h  = 1.5, and in figure 6, for zjh = 3.0; the arrival 
times of the various modes and their reflections are also indicated. Note that since 
a t  the dye location farthest from the starting position (frame 3) ,  the highest-order 
mode (n = 9) does not arrive until the body has approached to within about 13h of 
the initial streak location, a considerably longer tank would be required to ensure 
that the upstream flow in the vicinity of the body ( x / h  < 20, say) had reached steady 
state. Since the amplitudes of the upstream waves seem to  increase with mode 
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FIGURE 4. Velocity perturbations upstream of two-dimensional triangular ridge. x/h  = 16, 
F,, = 0.4. (a) Data (frame, z o / h ) :  A (1,  62); (2, 120); 0 (3, 174); lines added for clarity. (b) 
Janowitz (1984) theory, with y = 0.11. xO/h:  ----, 62; ---, 120; - , 174. 

number, the most serious distortions of the upstream wave profile, caused by wave 
reflections, will presumably only occur once the slowest-moving (highest-order) wave 
reflections have arrived. 

Some velocity perturbation measurements a t  a much lower Froude number were 
also made. Examples of these are presented in figure 7, which shows the results 
obtained a t  frame 3 (x , /h  = 174) after 170, 270 and 490 s from the start of the tow. 
Five, eight and fourteen modes should have arrived after these times, respectively ; 
discussion is deferred to the following section. 

Examples of the measurements of the upstream density perturbations are included 
in figures 8 and 9. In  the former, the measured velocity and density perturbations a t  
frame 2 (z,/h = 120) after about 60 s are shown, when only the first three modes have 
passed and no reflections have yet arrived. At later times some reflections have 
arrived and figure 9 shows the velocity and density perturbations a t  frames 2 and 3 
( z , / h  = 120 and 174) after times of 170 and 260 s, respectively. At these times the 
first seven modes should have arrived and, apart from the probably small influence 
of viscosity and diffusivity, the only mechanism that can lead to different wave 
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x l h  = (x0 - Ut)/h 

2 1  - 
l 1  
i (b) 

I 
FIGURE 5 .  Velocity perturbations a t  fixed positions in the tank as functions of time. Fh = 0.4, 
z/h = 1.5 ( z /D  = 0.125). (a) 0 ,  Data for frame 1 ; A, 2; ., 3. Lines added for clarity. ( b )  Janowitz’s 
theory for frame 3 with y = 0.1 1 ; dashed lines are results without reflections. Arrival times of each 
mode (and its first reflection) a t  frame 3 are indicated. 

shapes a t  the two frames is reflections from the endwalls and the body itself- 
different numbers of reflected modes having arrived at each frame. In  this case, 
reflections of the first four modes should have reached the third frame, compared 
with only the first two modes a t  the second frame. 

Although the density perturbations are relatively small, they constitute large local 
variations in the Brunt-Viiisala frequency. For example, around x/h = 2, the change 
in N from its initial value of 1.33 s-l is about 0.8 s-l. After eventual arrival of the two 
highest-order modes in this case (n = 8,9) ,  the change would be even greater so, even 
without reflections, the final steady-state upstream conditions (after arrival of all the 
modes) would be very different from the initial conditions. Indeed, after the seventh 
mode has arrived, the local Richardson number, Ri = h/U2  dpldz, varies by almost 
an order of magnitude between 0.0 < z /h  < 2.5. The largest changes occur near 
z = 0  in this case, a t  z = 0, Ri is about 60 compared with the initial value of 
6.25. 

More extreme cases are presented in figure 10, which shows some density 
perturbations measured just 1 m from the upstream endwall of the tank. In this case, 
two different models were used: a simple vertical fence and a ‘Witch of Agnesi’- 
shaped hill, both 18.8 em in height. The model Froude number was 0.21 in both cases 
and results a t  122, 245 and 367 s are shown. 
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FIGURE 6. As for figure 5 ,  but at z/h = 3.0 ( z / D  = 0.25). In  ( b )  the dotted line is for frame 1 
the open circles in (a )  correspond to i t ;  * is the matching point giving y = 0.11. 

4.2, Comparisons with theory 

Figure 4 ( b )  shows the expected wave shapes according to the theory of Janowitz 
(1984) (equation 2 a ) ;  the drag y was taken as 0.11 (see below). The calculations 
include the effect of perfect wave reflections from the upstream endwall, but this 
makes little difference because only the first few (and weakest) reflected modes had 
arrived at frames 2 and 3 by this time. Wong & Kao's (1970) results would be very 
similar except for a rather smaller change in relative amplitudes between modes. It 
is evident that the wave shapes are roughly in accordance with the predictions, but 
the experiments show a rather weaker amplitude variation between modes than is 
indicated by the theory. It should be noted, however, that these data are all for 
x / h  = 16, which may be sufficiently close to the body to be within the region affected 
by the additional upstream perturbations which decay quite rapidly with x (Wong 
& Kao 1970; Janowitz 1981). 

Figures 5 (b)  and 6 ( b )  show the theoretical changes in wave amplitude a t  a fixed 
z /h  that occur when the various modes arrive. In  the absence of viscosity, the arrival 
of each mode would lead to a step change in velocity. In practice, of course, one 
would not expect abrupt changes in wave amplitude a t  these times; the individual 
modes will not reach their full strength a t  the mode crossing time. One immediate 
deduction is that, again, the general theoretical result of wave amplitude increasing 
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FIGURE 7. Velocity perturbations upstream of two-dimensional ridge. Frame 3 (a  = a), P ,  = 0.18. 
(a )  0 ,  Data after t = 170 s; 0, 270 s ;  A, 490 s ;  lines added for clarity ( b )  -, Theory with 
y = 0.26 after t = 170 s ;  ---, 270 s ;  ----, 490 s. 

with mode number is consistent with the data except, as expected, for the highest 
wavenumbers, when the experimental amplitudes are rather lower. It is worth 
noting, however, that the qualitative trend in the evolving wave shape is not too 
dependent on the way in which wave amplitude varies with wavenumber. Only if the 
amplitude decreased fairly rapidly with wavenumber would the theoretical results 
look significantly different from the data of figures 5 ( a )  and 6 ( a ) .  Figures 5 ( b )  and 
6 (b )  also show the Janowitz (1984) results without inclusion of the reflections, for the 
third frame position only. At this position, only the first four reflected modes arrive 
before the body is within x/h = 12 of the initial dye-streak position, and reflections 
do not appear to alter seriously the wave field prior to this. 

The theoretical wave amplitudes shown in figures 4, 5 and 6 were obtained by 
matching the result for the sum of the first five modes (at z /h  = 3, figure 6) with the 
experimental value a t  x/h = 80 and frame 3. This implied a value of about 0.11 for 
y ,  corresponding to a drag coefficient of about 1.3 based on the body height. This was 
used to obtain all the other theoretical results shown in these figures. Slightly 
different values of y would be obtained if the matching were performed a t  different 
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FIQURE 8. Velocity (a )  and density ( b )  perturbations at frame 2 after 60 s. 0 ,  data; -, 
theory with y = 0.11 (F,  = 0.4). 

spatial or temporal positions, but the general level of agreement between the 
theoretical and experimental results would not be significantly affected. 

With the value of y deduced from the velocity data it was possible to compare the 
density perturbations with those expected on the basis of the theory. The theoretical 
results are included in figures 8 and 9. In  the latter case perfect reflections of the first 
two and the first four modes (from the endwalls only) have been assumed whereas in 
the former case no reflections are included - see $4.1. Note that the inclusion of 
reflections from the body itself rather than the downstream endwall, for z/h < 1,  
would make little difference to the theoretical results. 

In  all cases the experimental density perturbations have about the magnitude 
expected on the basis of the Janowitz (1984) theory. It should be emphasized that 
the Ap/po data were obtained as a difference between two density-profile 
measurements, so that there is inevitably some scatter - the maximum perturbation 
is only about 0.5 % ! In  the cases where some reflections are expected to have arrived 
(figure 9) the density data also follow at least qualitatively the expected differences 
in perturbation profiles at the two frames, caused by differences in the number of 
reflected modes. The velocity data are not quite so consistent: for z/h > 3.0 the 
frame-2 perturbation velocity seems rather more positive than expected. 

Viewing all these figures (5, 6, 8, 9) as a whole, it is evident that the theory of 
Janowitz (1984) not only gives a good qualitative description of the upstream flow 
but also provides reasonable quantitative estimates for the magnitude of the velocity 
and density perturbations, provided a suitable value for the drag is chosen. The 
figure 4 data are probably, as indicated earlier, influenced by attenuated waves in the 
region near the obstacle. Now these data are all for F, = 0.4 and n h / D  = 0.26, for 
which a maximum of nine wave modes are excited. As noted in $2, the theory is only 
valid for nnb/D > 1,  where b is the effective height of the force distribution a t  
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FIQURE 9. Velocity (a)  and density ( b )  perturbations (a = co) a t  Fh = 0.4. (frame, t )  : (3, 260 s ) ;  
0 ( 2 ,  170 s ) .  -, Theory with four reflections; ---, theory with two reflections. 

x = 0. Taking b =$, all wave modes (except possibly the ninth) satisfy this 
condition. The experimental data are consistent with that. However, a t  lower 
internal Froude numbers, higher-order wave modes will travel upstream and the 
amplitude of these will presumably not be adequately described by the theory since 
they will not satisfy the above condition. Our experiments a t  F,  = 0.18 seem to 
demonstrate this. Figure 7 ( b )  shows the theoretical velocity perturbations a t  frame 
3 (x,/h = 174), obtained by matching the peak positive velocity perturbation 
obtained at t = 170 s. This implies a drag coefficient y of about 0.26. All reflections 
from both endwalls have been taken into account. The t = 270 s data are wholly 
consistent with the theory, but the amplitude (though not the wavelength) of the 
t = 490 s profile, after fourteen modes should have arrived, is very much smaller than 
the theoretical result. Similar data for lower values of x,, (frames and 1 and 2) have 
the same characteristics, being consistent with the theory (with y = 0.26) only up to 
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the arrival of the first eight or nine modes. Evidently the amplitudes of the higher- 
order modes do not continue to  rise so rapidly with wavenumber and, as expected, 
the theory breaks down for nnb/D > 1. 

A further indication of this behaviour is apparent from the density results in figure 
10. Included in the figure are the density variations calculated using the Janowitz 
(1984) theory, matching the peak Aplp,,  values after 122 s, by which time only the 
first two modes have arrived. After 245 s the first five modes should have arrived, 
although the fifth only arrives a little before 245 s and will presumably not have 
reached its full strength. Since the density profiles were obtained during a period of 
about 20 s, the theoretical result for just the first four modes (plus any reflections) 
is shown. The data are consistent with this result. However, although by 367 s a t  
least seven (of the maximum nine) modes should have arrived, the data do not show 
much further change in wavelength and, furthermore, the amplitudes are very much 
less than those obtained from the theory. The latter are so large that they cannot 
even be included on the same graph, but the variation near z = 0 is shown. In  this 
case nnb/D < 1 is satisfied by only the first four modes so, again, the data seem to 
confirm the adequacy of the theory, provided this criterion is satisfied, and imply 
considerably lower amplitudes for the higher-wavenumber modes which do not 
satisfy nnb/D < 1. 

Since these higher-wavenumber modes seem to be relatively insignificant, it is 
reasonable to suppose that the perturbation profiles might be similar to those 
expected on the basis of the Foster & Saffman (1970) theory, valid for F, = 0. These 
are included in figure 10. Now the theory was for F, = 0 so that all (infinite) wave 
modes have a group velocity infinitely larger than the obstacle speed, leading to 
simultaneous arrival of all modes plus their reflections. I n  practice of course, for 
F, < 1 the ‘squashing’ mode perturbations develop only after the finite time 
required for arrival of all significant modes and grow with time as a result of a rapidly 
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increasing number of reflections between the obstacle and the endwall as the latter 
is approached. It is interesting that, in figure 10, arrival of the first four modes (by 
t = 245 s )  leads to  a perturbation density gradient) near z = 0 very close to the Foster 
& Saffman prediction ; thereafter the profile changes, presumably because of the 
addition of further reflections. Actually calculations show that the linear addition of 
further reflections between the obstacle and the upstream endwall for increasing time 
(using just the first four modes) gives amplitudes at  t = 367 s a little in excess of the 
data and the Foster & Saffman result. These are not shown, however, since it is most 
unlikely that linear theory could describe in detail the final transition between the 
behaviour before reflections become significant and that in the last part of the tow 
when they must become dominant for F ,  < 1. 

As a final comment on figure 10, it is significant that there is so little difference 
between the results for the fence and the ' Agnesi ' hill. At higher Froude numbers we 
expect the wave amplitudes to be dependent on the obstacle drag so, given that the 
same drag for these two obstacles seems at  first sight highly unlikely, a possible 
implication of the data is that F ,  = 0.2 is sufficiently close to the F ,  = 0 limit to 
make the obstacle shape (other than height) of only secondary importance: wave 
drag is clearly irrelevant at F ,  = 0 and the viscous drag in the shear layer at  z = h 
will presumably be independent of the body shape. On the other hand G. S. Janowitz 
(private communication) has suggested that for obstacles sufficiently short even the 
wave drag may not be a strong function of body shape. Proper confirmation of this 
assertion would not be easy, but if F ,  = 0.2 is considered to satisfy F,  0, the data 
shown in figure 10 are not inconsistent with the idea. 

5. Three-dimensional cases 
Although a number of velocity-perturbation measurements were made for cases of 

three-dimensional triangular ridges, there were various confusing aspects of the 
results ; we shall therefore not present them here in detail, although some comments 
are appropriate. Whilst the columnar modes were in all cases clearly weaker than 
those found for two-dimensional obstacles, they led to changes in upstream velocity 
conditions that were certainly measurable. One might expect that the lowest-aspect- 
ratio obstacle (a = 2) would generate weaker upstream waves than the highest 
(a = 8) ; the results had a slight trend in that direction. Some tows were made with 
the baseplate alone and also with the obstacle alone (no baseplate). In  the former 
case the results were very similar to the a = 2 data. Without the baseplate the 
a = 2 data lay scattered about u = 0 whereas for a = 8 perturbations were clearly 
significant. Evidently the baseplate itself, which was submerged by typically 4-5 mm 
and had a 5 mm trip wire mounted near its leading edge, was the dominant cause 
of the upstream disturbances in the runs made with the smaller three-dimensional 
obstacles. This result serves as a warning for any future planning of similar 
experiments. 

Data were also obtained from a tow of a circular hill of height 15.5 em, whose shape 
was defined by h(r)  = H/(1+ ( y / L ) ' ) ,  with L,  the radius a t  which h = I&, of 39 em. 
The internal Froude number (UIND)  was the same as in the other cases ; this ensured 
that the same number of wave modes (9) were excited. The data showed that the 
wave amplitudes were considerably greater than those generated by the triangular 
ridges, lying roughly half-way between the a: = 8 and a = 00 data. Since the 
projected frontal area of this hill was some two to three times as great as that of the 
a = 8 triangular ridge this was, perhaps, not surprising. 
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There was no doubt that the upsteam columnar disturbances in the three- 
dimensional cases followed the general pattern of the two-dimensional results but for 
small obstacles could be dominated by the motions generated by the baseplate itself. 
The practical implication of these results for the associated work described by CS and 
Castro (1987) is that since, for F ,  > 0.4 a t  least, the highest-order modes had arrived 
at the third dye-streak position (which is where the lee-wave photographs were 
generally taken) by the time the body had approached to within x / h  = 13 of that 
position, we are confident that the lee-wave fields observed for the a < 8 cases had 
reached their steady-state configurations : the perturbations do not have disturbingly 
large amplitudes. This was not necessarily the case for the wider bodies (a > 8);  
certainly any rotors generally seemed to take longer to develop in these cases (Castro 
1987). However, the results for the circular hill, in particular, imply that even in 
the case of three-dimensional obstacles great care must be exercised in planning 
experiments if steady-state upstream conditions are sought. 

Finally, some density perturbations upstream of the circular hill were also 
measured and these were not inconsistent with the Janowitz theory if a drag 
obtained by matching the velocity data were used. The results confirmed that the 
influence of endwall reflections (squashing) was insignificant in our three-dimensional 
experiments. It does not seem profitable to make detailed comparisons between these 
three-dimensional experiments and two-dimensional theory. The perturbations must 
decay with distance upstream, for they can spread laterally, but we have not made 
a thorough study of that aspect of the problem. In  view of its practical importance 
for three-dimensional experiments, it may well be worth further investigation. 

6. Conclusions 
The basic conclusions of the present work can be summarized as follows. 
(i) In  two-dimensional towing-tank experiments in which ND/nU > 1 the 

columnar modes propagating upstream of the towed obstacle can have significant 
amplitudes. Unless the obstacle height parameter, h/D,  is very small and the 
obstacle has an ‘easy’ shape, the perturbations are of first order and therefore of 
different type from the second-order perturbations described by theories like those 
of McIntyre (1972) or Baines & Grimshaw (1979). The non-decaying large-amplitude 
disturbances found in the present work were similar to those described by Wei et al. 
(1976) for obstacles generating an open, turbulent separated wake. 

(ii) The theoretical results of Wong & Kao (1970) and Janowitz (1981, 1984) 
describe qualitatively the form of the upstream perturbation velocity and density 
profiles. Further, our experiments show that Janowitz’s theory gives a reasonable 
quantitative indication of the relative amplitudes of the different modes (for 
multiply subcritical cases) provided nnb/D < 1, with b/h = 0.5. In this range the 
wave amplitude increases with wavenumber, although the rate of increase is possibly 
rather lower than that predicted by the theory and, in any case, the higher- 
wavenumber modes (for which nnb/D > 1) have less significant amplitudes. Taking, 
say, ten body heights to be a measure of the upstream distance beyond which the 
obstacle’s pressure field becomes insignificant, the implication of these conclusions is 
that steady-state upstream conditions cannot practically be achieved, even ignoring 
endwall reflections, until the highest wave mode has arrived at x / h  = 10. If 
K = ND/nU is only slightly larger than an integral value, the highest-order wave 
travels upstream a t  a relative speed very sl.ow compared with the body speed, so the 



Upstream motions in stratijied $ow 505 

body may have to travel a distance of a t  least O(100h) before this wave arrives a t  
x / h  = 10. If the wave amplitudes had been found to decrease with wavenumber 
(contrary to the Janowitz theory) then roughly steady-state conditions would have 
been achieved earlier. 

(iii) In  cases where the Froude number is so small that the higher-order modes 
have nxb/D > 1,  steady-state conditions may be achieved rather earlier than 
anticipated on the basis of the speed of these modes, since their amplitude is 
relatively insignificant. The Foster & Saffman (1970) F ,  = 0 theory provides an 
upper limit on the rate a t  which the density perturbations grow in the x /h  < 1 region 
and, for F ,  = O(&) experiments, provides reasonable quantitative estimates of the 
upstream density perturbations, independent of the obstacle drag, 

(iv) The density perturbations ( A p l p , )  caused by the columnar modes have 
typical a,mplitudes of order N U / g  times those of the velocity perturbations. In  our 
experiments, N U j g  x 0 ( 1 O p 2 )  but it is more appropriate to compare the density 
perturbations with the initial density difference over the body height ; together with 
the velocity perturbations these density changes imply substantial perturbations in 
local Richardson number. 

(v) In  experiments with three-dimensional obstacles upstream perturbations are 
relatively small unless the obstacle spanwise width is a large fraction of the tank 
width. In  the present work, for the smallest obstacles, the perturbations appeared to 
be caused largely by the (small) submersion of the baseplate and the presence of 
a substantial leading-edge trip wire. Together, these ‘two-dimensional objects ’ 
generated motions very similar to those found in the true two-dimensional-hill 
experiments, though of rather lower amplitude. In any future investigations of the 
upstream decay of the columnar modes in three-dimensional cases, care will be 
needed to ensure that the generated upstream motions are a result solely of the 
obstacle. For significantly larger obstacles, more significant velocity and density 
perturbations were observed, but in no case were the effects of endwall reflections and 
squashing noticeable. 

The three-dimensional results also indicated a slight trend of increasing wave 
amplitudes with increasing obstacle spanwise aspect ratio, as might be intuitively 
expected. We do not believe that the amplitudes were sufficiently high to influence 
the major conclusions of our previous experiments (e.g. Hunt & Snyder 1980; Castro 
et al. 1983; Castro 1987) but they could perhaps have been reduced further by 
minimizing the baseplate submersion. 

The fact that a linear theory apparently does so well in predicting the upstream 
disturbances for cases that would normally be considered strongly nonlinear is 
perhaps the most surprising feature of our results. It should be emphasized, however, 
that the obstacle drag is hot predicted by the theory; choosing a suitable value 
merely makes our data on the relative strengths of the different modes consistent 
with the theoretical results. Presumably more appropriate theories yet to be 
developed would not lead to large quantitative changes in these relative mode 
strengths. However, further careful experiments of this sort with different types of 
obstacle would undoubtedly be helpful in elucidating the range of validity of the 
various theories. 
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